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ABSTRACT

This report develops the theory necessary to analyze radar images of non-
conical rocket nozzle sections. The theory is based on Geometric Optics and ray
tracing. The location of the expected response in an inverse synthetic-aperture
radar image of this type of rocket nozzle is developed. The ability to predict the
location of the response is used to develop a technique for reconstructing the shape
of a rocket nozzle from measurements made from an image.

The theory is applied to a pass of data collected on a tumbling Delta Stage
II rocket body. The data were collected by a millimeter-wave radar with a center
frequency of 35 GHz and a bandwidth of 1 GHz. The theoretical predictions of
the scattered fields are first validated using these data and drawings of the rocket
nozzle. The inverse method is then applied to the data to determine the shape of the
nozzle. The agreement between the nozzle shape predicted by the inverse method
and drawings of the nozzle agree to within 6 percent.
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1. INTRODUCTION

The interaction between electromagnetic waves and cavities often exhibits very distinguishable
scattering patterns. One method for extracting information from the scattered field is to form a
radar image [1]. This technique is very useful if the frequency of the incident field is not near a
resonance of the cavity. One of the distinguishing features in an image of a cavity is a return that
is visible downrange from the entrance of the cavity. This extended return is the result of energy
trapped inside the cavity that later exits toward the radar. By measuring the characteristics of this
extended return it may be possible to determine information about the cavity.

In order to study the phenomenology of scattering from cavities, this report examines a
common geometry-a rocket nozzle. Rocket nozzles are commonly found on tumbling rocket bodies
that are left in an earth orbit. At times it is useful to try to determine the condition, or shape/size,
of a rocket nozzle on a tumbling rocket body. To derive such information, an understanding must be
developed of how radar energy scatters from such nozzles. This report will examine the scattering
from a non-conic rocket nozzle and address the question of estimating the shape of the nozzle from
measurements made from radar images.

The remainder of this report is as follows. Section 2 develops the theory to predict the
scattered field from the interior of the rocket nozzle, using Geometric Optics [2]. Section 3 applies
the theory developed in Section 2 to a known rocket nozzle. The predicted location and intensity
of the scattered field are compared with those measured from a radar image. Section 4 develops
the framework necessary to extract the parameters of a rocket nozzle based on measurements from
radar images. This technique is applied to the rocket nozzle data that were used in Section 3.
Section 5 summarizes the developments of the previous sections.

I i i i m m i m 17r . ...



2. THEORY

In this section Geometric Optics (GO) [2] is used to compute the electromagnetic scattering
from a rocket nozzle. For this method to be valid, the nozzle is assumed to be large compared to
the incident field's wavelength and the frequency of the incident field is assumed to be far from a
resonance point of the nozzle cavity. The problem is made tractable by assuming that the rocket
nozzle is a body of revolution and that the generating arc can be approximated by a section of an
ellipse. Under these assumptions the surface of the nozzle is described as

r(b, ) = A cos(V1,)i + B sin(o) (kcosb 0+ 'sin 0) + ro , (1)

where the parameters 4 and 0 are defined by

4'o < <' V , 0< 0 < 2r (2)

and the unit vectors :k, k, and z are defined in Figure 1. The parameters A and B describe the
elliptical generating arc of the body. The inward normal to the surface is found to be

n(V,, 0) = - B cos(4') - A sin(') (* cos + k sin 0) (3)

The nozzle is illuminated by a sinusoidal plane wave with the normal to the phase front depressed
by an angle 0 from the body symmetry axis. Therefore, the incident field at any point in space is
described by

=' (4)

where r is a position vector in space, e' is the polarization vector, and the direction vector i is
given by

, = cos(O)i + sin(0)* (5)

Without loss of generality, the direction vector of the incident field is restricted to lie in the X - Z
plane.

To compute the scattering of the incident field inside of the rocket nozzle, Geometric Optics
is employed. This involves decomposing the incident field into an infinite number of ray tubes,
then tracing the ray tubes as they reflect within the nozzle. This procedure begins by tracking
an unshadowed ray that enters the cavity as the ray intercepts the upper surface (0' > 0) of the
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Figure 1. Rocket-n ozzlc scattering geometry.

nozzle at some point i and reflects from this surface according to Snell's law. According to GO
and Snell's law, the reflected ray can be described by

V = V'(iI,'). RA(, ,s)e - k , (6)

where A(O',s) is the wavefront divergence factor and f. is the dyadic reflection coefficient. The
parameters 4ik and 4) indicate the point on the surface where the ray is reflecting from. The
wavefront divergence factor is given by

A(¢',s) =P1P2 7  (7))
Pit + s)(p + s)(7)

where plt and p2T are the reflected wavefront curvatures. See Balanis 13] for a complete discussion
on the computation of the wavefront curvatures. The wavefront divergence factor is simplified by
assuming that s is large compared to the radii of cuirvature. Under these assumptions A reduces to

$(8)
S
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where

PI'P2" = RI R2 /4 (9)

However, the full form for A(s; ¢) is needed for the interior reflections. The right-hand side of the
above equation is the product of the principle radii of curvatures of the surface the incident wave is
reflecting from. The expression for the product of the curvatures, derived in Appendix B, follows:

RR 2  (A2 sin 2 V + B2 cos 2 V,)2 (10)
4 4AB

The asymptotic form of A, (8), will be referred to as A(Vk), where we have suppressed the •.

The dyadic reflection coefficient R is given by

R = ell'ell' - e.'e T  , (11)

where the unit polarization vectors in the local coordinate system are given by

e1 ' = e±r = , (12)

and

i' x e ' e ii (13)

, x e± = e r  (14)

From (6), the radar cross section can be determined through the following relationship:

a = 4r I E'. e'* , (15)

where e" is defined as the receive polarization.

Once the scattered field has been determined, it is straightforward to calculate the location of
the response in an image. The total path length the ray travels, with the path length from the radar
to the origin of the coordinate system removed, will locate the point in range. The location of the
response in cross-range is determined by the Doppler shift of the scattered field. The Doppler shift
is computed by calculating the rate of change of the scattered fields phase (range) with respect to

5



the aspect angle change. This mapping of the scattered field on to the range, range-rate coordinate
system forms the radar image. In the remainder of this report, the range to the response function,
R, will always have ro = 0.

2.1 One-Bounce Ray

A direct specular return will occur when a ray reflects off the top surface and returns toward
the radar (see Figure 2). From the above theory, this ray can be written as

Er = [Ei(Vi,i, 0i) lR(", i)] A(V,', i)ejks (16)

The specular location will occur when

ii( = -1 (17)

This implies that 46 = 0 and

Btan 0' = A" tan8 (18)

In practice, this ray does not occur because it is shadowed by the lower surface.

2.2 Two-Bounce Ray

This section examines a ray which reflects twice before it returns toward the radar. Ths ray
will show up in an image made with orthogonal polarized data. The ray that meets this .riteria
can be shown to reflect only off the upper surface; this ray is depicted in Figure 3. Based on the
theory developed previously, the reflected ray can be written as

"= [E:(t,€i1•
. R(4Vi, 1 •0i R(¢",,or)] A(0',q')A(s; 0',')e jk~s+8 r) (19)

Due to the geometry of this ray, Vi, = i,. It is necessary to determine the locations on the surface,
V,4 where the ray reflects from.

The most efficient manner for finding the reflection locations is to track the normal of the
wavefront as it reflects off the various surfaces of the nozzle. This is accomplished by using Snell's
law to determine the reflected ray's direction. For a ray that reflects off a metal surface, the reflected
ray's direction is written as

6
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Figure 2. Scattering geometry for a single-reflection specular.

where fi is the unit vector in the direction of n(0,0), as defined by (3).

Using this technitine, an incident ray i' is traced as it reflects off one surface and forms a
new ray F. This ray will t.er' hit the upper surface of the nozzle at a different 0 location and
reflect toward the radar, iorming the ray 9. Due to the symmetry of this problem, a number of
constraints can be put on the path of tOis ray. In order for the ray to return to the radar after two

reflections, the reflected ray must meet the following two conditions:

s • s= 0 (21)

and

0 < 0 < (22)

The above expressions lead to analytical expressions for the location of the reflection point:

cos4)' = tan 0 (23)
V1 + 2tan'o

. m =. m m llm llnm s ra= i =,. n7



and

* B
tan - + 2 tan 2 0 (24)

A

In practice, this ray is shadowed by the lower surface for most aspect angles.

The extended return range delay is given by 6r = IV,i'0i)_ r-.r,, o . The apparent range
of the response for a given , location will be

R(O) = A4 0 + , (25)

which, after substituting in the results obtained earlier, becomes

R(O) = A cos 0 cos V + B sin 0 sin V, cos o' + 2(B sin sin b) (26)

In a radar image the response will appear in cross range at

_ dR(O) X , -dO "(27)
dO

which, after the appropriate substitutions, becomes

xp. = (-Asin,0cosik' + Bcos0 in V') (28)

+ (-A cos0sinV' + Bsin 0cos 0) dib,

dkO+2( B cos 0' sin V,') -0

+2(B sin O'cos V) d-
dO

2.3 Three-Bounce Ray

This section considers a ray that reflects three times before it exits the nozzle and returns
toward the radar. This ray will appear as an extended return in a radar image made with principal
polarized data. This ray can be shown to take a path that reflects off one surface of the nozzle
and then off the bottom surface directly toward the same point on the upper surface from which it

"
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Figure 3. Scattering geometry for a two-reflection specular.

originated. This process is depicted in Figure 4. Based on this theory, the form of this ray can be
written as

Fr-= [E'(tt) • R(-i) ( R(V'i)} A(4,a)A( r; ,r)A(br; V49)e j k(s+ 2 br) , (29)

where 6r is the additional path the ray traverses before returning to the radar. The parameters 0'

and o'r represent the points on the surface of the nozzle.

It is necessary to determine the two locations V,' and Vr. The method from the previous

section is used to track the normal to the wavefront. Using this technique, an incident ray S' is
tracked as it reflects off one surface and forms a new ray . . This ray will then hit the bottom
surface of the nozzle and reflect again, forming the ray . . For the three-reflection ray to exist,
there must be one ray that will reflect from the bottom surface back along its own ray path. This

ray occurs when the surface normal at the lower reflection point is parallel to the incoming ray. It
is analytically very difficult to determine a priori which ray will meet this criteria.

9
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Figure 4. Scattering geometry for a three-reflecton specular.

A numerical search scheme is used to find the ray that meets this criteria. The numerical
scheme for the three-reflection ray is based on minimizing the function

= (--() (Vr(V/i)))2 (30)

where (/,) is the point at which a ray intercepting the upper surface at OW would intercept
the lower surface. The function Y will be zero, a minimum, at the correct point. The numerical
minimization is implemented in a MathematicaI program.

The extended return length for this case is given by 6r =1 r-ItVi- ) 1. The apparent range
of the response will be

R(O) = i .r-I V, ) + hir (31)

which, after substituting in the results obtained earlier, becomes

1Mathematica is a registered trademark of Wolfram Research.
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R(O) = A cos 0 cos Vi' + B sin 0 sin 1' + 6r (32)

The response will show up in cross range in the radar image at

_ dR(G) (33)Xps= dO

Upon performing the differentiation,

x =, (-Asin0cosP' + Bcos0sinV9) (34)

+ (-A cos0sin + B sin 0cos0') -O

dbr

is obtained for the cross-range position of the response. This process is depicted in Figure 5. The
first term in the expression corresponds to the true cross-range position of the reflection point. The
additional shift in cross range of the extended return is due to the dependence of the extended
return on aspect angle. The additional shift can be written as

Xer? = (AcosOsin 0' + Bsin cost,") t' + d+ r (35)-d+ dO

where this term is denoted as an error term. The additional shift in cross range can lead to errors

in measuring the extended return distances from radar images.

11
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3. DELTA STAGE II ROCKET NOZZLE

In this section the theory developed in Section 2 is applied to the case of a Delta II Second
Stage rocket nozzle. Data were obtained from images produced at the Millimeter-Wave Radar
located on the Kwajalein Atoll in the Marshall Islands. The images were made at a center frequency
of 35 GHz, with a bandwidth of I GHz and an integration angle of approximately 1.4 degrees. This
leads to equal range and cross-range resolutions of 28 cm.

As the configuration of the rocket nozzle is known, measurements of the extended return
distances were obtained directly from the images. These measurements were made by determining
the correct motion solution for the tumbling rocket body, then overlaying a wire-frame model. The
distance in range from the response to the wireframe of the nozzle surface was measured. The model
was derived from plans of the rocket body, so it can assumed to be exact to within a measurement
error less than that of the radar image.

In order to make predictions of the extended returns it was necessary to determine the pa-
rameters A and B for the generating arc. These parameters were estimated by fitting an ellipse to
a digitized representation of the nozzle. The following parameters were determined to be the best
fit:

A = 8.04 m,

B = 1.21 m, (36)

'Po = 12 deg,

= 42 deg.

Figure 6 shows the relationship between the fitted ellipse and the data points. Using these parame-
ters, predictions of the extended return distance were calculated for a sequence of images. Figure 7
shows a comparison between the measured and predicted extended returns and demonstrates a
slight discrepancy between the measured and predicted responses. As mentioned in Section 2,
there is an additional Doppler offset in the extended return response. This leads to an error in
measuring the extended return from the images. Figure 8 shows the magnitude of this error. Figure
9 shows a comparison between the calculated and measured data after the measurement error has
been corrected. Although the correction is small, it is enough to make a difference in the mini-
mization loop. These figures demonstrate that by correcting for the Doppler shift it is possible to
reduce the error between the predictions and the measurements. In general, the Doppler shift is less
than a resolution cell; thus. this bias error can be ignored for most problems. Figure 10 shows the
location on the ellipse of the two reflection locations. The upper curve is the first reflection location,
the lower curve the second. Figure 11 compares the predicted RCS to the measured RCS for the
range of angles considered in this section. In order to obtain the level of agreement demonstrated

13



in Figure 11, it is necessary to assume that the interior of the nozzle has a reflection coefficient of
p =0.74.
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Figure 7. Comparison between the measured extended return length and the uncorrected
calculated return length. The dots are the measurements with one-half resolution.cell error
bars.
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4. INVERSE PROBLEM

This section applies the prediction techniques described in Section 3 to the problem of es-
timating the nozzle parameters from image measurements. In general, this is not a well-posed
problem, but by incorporating a suitable number of additional constraints the problem becomes

tractable.

In order to take measurements from the images, it is necessary to set up a useful coordinate
system. The coordinate system used in this analysis is shown in Figure 12, which also demonstrates

the measurements necessary to estimate the shape of the nozzle, i.e., (d, z) pairs. This coordinate
system is set up such that the measurements do not require knowledge of the shape of the nozzle.

For this procedure to produce useful results, a large number of measurements are required (20-30);
thus, it is useful to produce overlapped images for the purpose of making the measurements.

Once the measurements have been made, they are used in a optimization loop to calculate
the two parameters that describe the nozzle. This loop is depicted in Figure 13. In order for this
optimization loop to correctly converge, it is necessary to have a good initial estimate of the nozzle
parameters. This estimate is derived from measurements of the diffraction points at the end of the

nozzle and the scattering from the outside of the throat of the nozzle.

The optimization technique was used with the measurements from images described in Sec-
tion 3 to estimate the nozzle parameters. The estimated parameters were found to be

-. 5 m, (37)

B = 1.2 m,

where the parameters were bound in the minimization within the intervals A E [7, 10] and B E
[1,21. These estimated parameters are within 6 percent of those derived from the engineering
drawings. During the minimization process there were many local minimums found around the

desired solution. It is therefore imperative that a good initial guess of the parameters be made before

the optimization process is initiated: several optimizations must also be performed to guarantee
that a global minimum has been found. It is important to understand that several combinations

of A and B can be used to describe the nozzle to within a prescribed accuracy. Any major defects

in the nozzle would clearly show up in these measurements.

19
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5. SUMMARY

This report examined scattering from a rocket nozzle that could be modeled as a section of
an ellipse. This modeling process yielded excellent agreement between measured and predicted ray-
path length data from images. Radar cross-section estimates were also calculated for the measured
three-reflection ray detected by the radar.

The report concluded by demonstrating how this prediction technique could be used to de-
termine the parameters of a rocket nozzle from direct measurements from a set of images. Through
the use of an optimization loop, the parameters were varied until the calculated and measured
prediction extended return lengths matched. This process yielded calculated parameters that were
within 6 percent of those measured from the engineering drawings.

The Geometric Optics (GO) technique is valid for a wide range of cavity-scattering problems,
as long as the cavity is away from resonance and is large compared to the incident field's wave-
length. A more general shape description of the cavity/nozzle could have been used, but this report
demonstrated the usefulness of the elliptical approximation. If the nozzle had been straight, not
curved, the GO method would have failed because there would have been a caustic at the point
where the internal surface became specular to the radar. For this case a more elaborate method is
needed to calculate the amplitude of the respon.e.
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APPENDIX A
SURFACE PARAMETERS FOR A BODY OF REVOLUTION

In this appendix the important surface parameters for an arbitrary body of revolution (BOR)
are derived. The geometry used in this appendix is shown in Figure A-1. The analysis starts by
writing the parameterization of the surface as

X = f(0)cosou + f(0)sinOv+g()w , (A.1)

then forming the two surface tangent vectors

Xc = f (0)Cos Ou + f(8) sin Cv + g'(0)w , (A.2)

X. = -f(0) sin Ou + f(O) cos ov + g(0)w (A.3)

The normal can then be formed by forming the cross product X0 x XS; after normalization, this
leads to the expression for the unit normal

N= 1 (-fgcos u - fg'sin Ov + ff'w) (A.4)

In order to describe the surface of the BOR, it is necessary to compute various derivatives of the
surface normal. These derivatives are listed below:

No = t[-fg'cos0u- fJ'sinv + ff'w] (A.5)

+( [- cos45(fg" + f'y')u + - sin 0(fg" + f'g')v + (f'f' + ff")wJ (A.6)

and

N= [f g'sin ou + -fg'cos ov] , (A.7)

where

- (fg')[fg" + f'g'] + 2(ff')[f'f' + f f"] (A.8)

((fg) 2 + (ffl)
2),.

and

2.5



1 +(A.9)

The surface of the BOR can be described in either the First Fundamental Form,

I = dX dX = EdO2 + 2FdOd¢ + Gd ,
2  (A.10)

where

E = XO.Xe=f, 2 +g, 2  (A.11)

F = Xa.X= O (A.12)

G = X.X. = f2 (A.13)

or in the Second Fundamental Form,

II = -dX • dN = LdO2 + 2AdOd + Nd02  (A.14)

where

L = -X 9 N = -(g'ff"- f'f.q") (A.15)

Al = -(Xe.Nj + X¢.No) = 0 (A.16)

N = -Xe.N = (f2 g' (A.17)

The principle curvatures, KI1.2, are found by solving the quadratic

(EG- F 2 )g 2 - (EN + GL - 2FAI) + (LN _ A 2 ) = 0 (A.18)

The quadratic equation can be solved; this yields

g' (A.19)

and

K= - g (A.20)
Ut2 + gII2

26



It can be shown that if Al =F =0, the Principle directions of curvature are given by

l= xe(A.21)
IXe

and

e= TXO (A.22)

164%7-14

V

Figure A-1. Body- of-rcivolu lioni coordinate system.
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APPENDIX B
SURFACE PARAMETERS FOR THE NOZZLE

For the case of an elliptic generating arc with

f(O) = BsinO (B.1)

and

g(O) = A cosO , (B.2)

the surface parameters are found to be the following:

E = B 2 cos 2 0 + A2 sin2 0  (B.3)

F = 0 (B.4)

G = B 2sin 2 0  (B.5)

L = (B.6)
'IA2 sin 2 0 + B 2 cos 2O

Al = 0 (B.7)

N = ABsiO (B.8)
vfA2 sin 2 0 + B 2 cos2 0

Using the results of Appendix A, the principle curvatures are found to be

2 -AB (B.9)
(A2 sin2 0 + B 2 cos 2 0 )3/2

and

A

-K2 2(B.10)
(A2 sin 2 + B 2 cos 2 0 )1/2

29
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